
VokalJäger Enhanced Algorithmic Tool Pack – VJ.EAT

Documentation

Author: Carsten Keil

http://vokaljaeger.org/ - ckeil@vokaljaeger.org

Version: 0.15 as of 7/5/2021

A. Introduction ... 2

A.1. Synopsis ... 2

A.2. VokalJäger VJ.EAT.core and VJ.EAT.demo license (algorithms and data) .. 2

A.3. VokalJäger VJ.EAT.demo sound file license ... 3

A.4. Attribution ... 3

B. Install .. 4

B.1. Introductionary notes ... 4

B.2. Installation of the core algorithms (VJ.EAT.core) .. 4

B.3. Setting Microsoft Windows PATH variable ... 4

B.4. Install PRAAT .. 5

B.5. Install R ... 5

C. Create a working environment and test it with VJ.EAT.demo .. 8

C.1. Create a working environment ... 8

C.2. Demonstration: end-to-end formant analysis ... 8

D. Methodology enhancements beyond the original VokalJäger ... 9

D.1. Artificial intelligence driven sweep .. 9

E. Code and data documentation ... 10

E.1. Directory structure of VJ.EAT.core ... 10

E.2. Directory structure of VJ.EAT.demo ... 10

E.3. PRAAT program VJcalcFormants ... 11

E.4. R program VJsweepFormants ... 14

E.5. R program VJnormalizeFormants ... 18

E.6. R program VJanalyzeFormants ... 21

E.7. Data dictionary .. 26

F. Change Log .. 29

F.1. Version 0.12 ... 29

G. References ... 29

A. Introduction

A.1. Synopsis

The VJ.EAT VokalJäger Enhanced Algorithmic Tool Box re-implements the PRAAT and R kernel algorithms from

Keil 2017: Der VokalJäger: Eine phonetisch-algorithmische Methode zur Vokaluntersuchung. Exemplarisch

angewendet auf historische Tondokumente der Frankfurter Stadtmundart, Deutsche Dialektgeographie Vol. 122.

The core idea of VJ.EAT is to offer one-stop solution for a robust a fully automated formant measurement and

phonetic classification, here packaged and tested for Microsoft Windows 10. The VJ.EAT re-implementation is

by a factor of 10 more performant than the original version, more flexible and robust plus rearranged for modular

use.

The 0.x series of the algorithms is a pre-release version. The final version will be published on CRAN.

In particular, VJ.EAT offers the following algorithmic components:

A.1.1. Using PRAAT, it calculates for a given sound file and a text grid, which defines the samples resp. time

ranges to go for, intra-sample formant trajectories. That is done for a series of upper formant ceilings

(PRAAT program VJcalcFormants, see E.3).

A.1.2. Using R, it performs the so called “sweep”. Here the formant trajectories of the preceding step are

smoothed with a DTT and formant values are extracted from a specific point on the curve. Out of all

different trajectory-bundles for each sample – one for each upper formant ceiling – the one is chosen,

which is optimal under a certain heuristic (R program VJsweepFormants, see E.4).

A.1.3. Using R, it performs a formant normalization. Here the extracted formant values of the preceding step

are normalized using the (optionally: robust) Lobanov or Gerstman procedures (R program

VJnormalizeFormants, see E.5).

A.1.4. Using R, it classifies the phonems (R program VJclassifyFormants, see xx, not implemented yet).

A.1.5. Using R, it creates a series of statistical analysis and formant plots. (R program

VJanalyzeFormants, see E.6).

A.2. VokalJäger VJ.EAT.core and VJ.EAT.demo license (algorithms and data)

The algorithms and data in VJ.EAT.core and VJ.EAT.demo are published under the license “Creative

Commons Attribution 4.0 International CC BY 4.0” (with exception of the sound files: see A.3). You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially (This license is acceptable for Free Cultural Works. The licensor cannot revoke

these freedoms as long as you follow the license terms). Under the following terms:

Attribution — You must give appropriate credit (see A.4), provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor

endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

Notices: You do not have to comply with the license for elements of the material in the public domain or where

your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give

you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or

moral rights may limit how you use the material.

Full CC 4.0 BY license text here: https://creativecommons.org/licenses/by/4.0/

A.3. VokalJäger VJ.EAT.demo sound file license

MP3 recordings by LibriVox (https://librivox.org/), hosted on Archive.Org

(https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox), published under "Public Domain

Mark 1.0" license (https://creativecommons.org/publicdomain/mark/1.0/), means: "No Copyright. This work has

been identified as being free of known restrictions under copyright law, including all related and neighboring

rights. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking

permission."

"Sammlung deutscher Gedichte 018" [published: 05/06/2015]

Karlson-Heine-Ritter.mp3 is:

https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_20_ritter_

ksn_128kb.mp3

Tabea-George-Vogelschau.mp3 is:

https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_17_vogels

chau_tab_128kb.mp3

Verlaine-Zwiegespraech.mp3 is:

https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_19_zwieg

espraech_hok_128kb.mp3

A.4. Attribution

If you use VJ.EAT you must give the following attribution (in your citation style):

Keil 2017: Der VokalJäger: Eine phonetisch-algorithmische Methode zur Vokaluntersuchung. Exemplarisch

angewendet auf historische Tondokumente der Frankfurter Stadtmundart, Deutsche Dialektgeographie Vol. 122.

and

Keil 2020: VJ.EAT: VokalJäger - Enhanced Algorithmic Tool pack. Version [insert version number here].

http://vokaljaeger.org. Published under CC 4.0 BY (https://creativecommons.org/licenses/by/4.0).

In case you re-distribute the sound files you must give an attribution to the original source and license (see A.3).

https://creativecommons.org/licenses/by/4.0/
https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_17_vogelschau_tab_128kb.mp3
https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_17_vogelschau_tab_128kb.mp3
https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_19_zwiegespraech_hok_128kb.mp3
https://archive.org/details/sammlung_deutscher_gedichte_018_1506_librivox/deutschegedichte018_19_zwiegespraech_hok_128kb.mp3
https://creativecommons.org/licenses/by/4.0

B. Install

B.1. Introductionary notes

B.1.1. This all works on only on Microsoft Windows.

B.1.2. Know basics of the windows command shell [1]. To open one, the default way is: Windows start > start

typing “cmd” > Press <ENTER>.

B.1.3. You need a plain text editor (i.e. NOT Microsoft word). Windows built-in notepad application will do,

but Notepad++ from https://notepad-plus-plus.org/downloads/ is much better.

B.1.4. You can edit the text files with Microsoft EXCEL as well, but make sure you save them as tab separated

text file just you opened them, don’t save as XLSX.

B.1.5. All tags and preferably all other text elements (phoneme codes, annotations, file names etc.) should

restrict to classical old school 7 bit ASCII letters - from 33 (’!’) to 126 (‘~’). Spaces (‘ ‘) should be avoided

and replaced with underscores (‘_’). Umlaute, enhanced character sets like UTF-16 etc. should be

avoided. That ensures proper processing, esp. where tags are automatically used as components of

keys, filenames etc.

B.1.6. Recent key content changes in most recent version updates are highlighted.

B.2. Installation of the core algorithms (VJ.EAT.core)

B.2.1. Download the latest VJ.EAT.core zip-packaged release (i.e. that with the highest version number)

from here:

http://vokaljaeger.org/download.

Unpack it to where you like it (e.g. to your desktop).

B.2.2. You now have the core algorithms in a folder VJ.EAT.core with a structure described in E.1:

B.2.3. Next you should set up – an in case: test – a working environment to hold your sound files etc. (see C.1).

B.3. Setting Microsoft Windows PATH variable

B.3.1. You need to get your windows PATH variables right, which allow windows to find the programs of

concern, most notably the executable praaet.exe and rscript.exe, on your computer. To that

end you must tell Window to add the directory location of the executables, like c:\Program

Files\PRAAT for PRAAT to the Windows PATH variable.

B.3.2. Go to Windows start, start typing “Umgebungsvariablen für dieses Konto bearbeiten”, then open the

associated program.

B.3.3. A window like below listing the “Umgebungsvariablen” for the current user should pop up. It is

important that this is actually the user which wants to run VJ, not the administrator.

https://notepad-plus-plus.org/downloads/
http://vokaljaeger.org/download

B.3.4. Select “Path”, edit (“bearbeiten”), and then create (“neu”) or change (“bearbeiten”) directory entries

relating to the programs PRAAT and RScript. You obviously need to know where the executables are

stored, see sections B.4 and B.5 for more program specific info. A proper set up could look like this:

B.3.5. Then “ok” it from the 1st screen (“Umgebungsvariable bearbeiten”), then from root screen

(“Umgebungsvariablen”).

B.3.6. Reboot your computer.

B.3.7. HACK: If assignment of the PATH variable fails you can always exchange the call to the executable of

concern, say PRAAT with the full path call, say “c:\Program Files\praat.exe” instead of the

simple call praat (note, you have to put the full-path call in parenthesis and you have to do that in all

batch scripts you intend to use, which is a bit of a pain (and you have to do it again, resp. check, in case

you update or move your install). So you would open you batch script with an editor and exchange the

direct call (below: PRAAT) with the full path call.

B.4. Install PRAAT

B.4.1. Install PRAAT from here: http://www.fon.hum.uva.nl/PRAAT/ (Tested to work with PRAAT version

6.1.09).

B.4.2. Add the PRAAT executable directory with praat.exe in to - usually something like c:\Program

Files\PRAAT - to the Windows PATH variable (see above).

B.4.3. Test the PRAAT install: navigate to \prog\batch and start VJtestPRAATinstall.bat. This

should display the PATH variable as PRAAT sees and reports – if all works fine – the PRAAT version

number. If PRAAT doesn’t report, the PRAAAT executable path has not been added correctly (and should

not show up on the screen on the PATH report). To fix, see sectn. B.3 above.

B.5. Install R

http://www.fon.hum.uva.nl/praat/

B.5.1. Install R from here: https://cran.r-project.org (tested to work with R version 3.6.3).

B.5.2. Add the R executable directory with rscript.exe in it is located to the Windows PATH variable (see

well above). It may occur that R – especially when you try to “refresh” an older install – ends up as

parallel install of the older version – say in programs: c:\Program Files\R\R-3.5.2\bin –

and the newer version – say now in documents: c:\Users\User\Documents\R\R-

3.6.3\bin. This is an utterly confusing situation, so you need to make sure that you get the correct

directory added to you PATH variables. You can always find out where your “actual” R installation – the

one you can access via the Windows menu – easily. Just start the R GUI from the windows start menu

– in case of doubt start the version with the highest version number. Then type in R.home() <ENTER>

and you get the associated path and version displayed (you need to add the trailing \bin, though):

B.5.3. Optionally: Install R-Studio desktop from here: https://rstudio.com/products/rstudio/download/

(tested to work with RStudio version 1.2.5033).

B.5.4. Install Rtools (for libraries, which require compile) from https://cran.r-project.org/bin/windows/Rtools/

(tested to work with Rtools version 3.5).

B.5.5. Install the following libraries (most conveniently done in RStudio > Tools > Install Packages… or via the

R GUI, which should be found in the Windows start menu, via > packages > install packages). If asked,

always install all dependencies and compile sources. Some care need to be taken, esp. when multiple

newer and older R versions are installed in parallel: you need to ensure that the packages are installed

against the latest R version and that is the one you call (either via PATH or the direct call). What always

works is a simple clean refresh: download newest R, RTools, Rstudio, install in that order, then (re)install

all packages – that should synchronize all (at one point in time you may have to get rid of all the older

rubbish installs, though…).

• data.table

• doBy

• dtt

• hqmisc

• ggplot2

• MASS

• ICSNP [added in version 0.13]

• doSNOW (only for multi-core processing; recommended)

• foreach (only for multi-core processing; recommended)

https://cran.r-project.org/
https://rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/windows/Rtools/

B.5.6. Test the R install: navigate to \prog\batch and start VJtestRinstall.bat. This should display

the PATH variable as R sees it and reports – if all works fine – the R version number, the R executable

directory, the R library directory and all R libraries installed. If R doesn’t report, the R executable path

has not been added to PATH correctly (and should not show up on the screen on the PATH report).

Check that all fits together: The R executable directory and the library directory should point to “the”

actual R install. To fix, see B.3 above.

C. Create a working environment and test it with VJ.EAT.demo

C.1. Create a working environment

C.1.1. The working environment contains your sound files, text grids as input as well as the job batch files, the

steering configuration and your output, the formants etc. The standard set up is documented in E.2,

but you are entirely free to run your own structure (although that requires setting resp. adjusting the

paths in all configuration and batch files).

C.1.2. A fully fledged test environment – VJ.EAT.demo – can be downloaded from: xxx.

C.1.3. Install it by copying the VJ.EAT.demo directory next to resp. in the same directory as VJ.EAT.core (You

can copy it or any other working environment where you like, but then you need to adjust the paths in

the configuration files). You should have now a directory structure like

C.2. Demonstration: end-to-end formant analysis

C.2.1. This one reads the sound files in VJ.EAT.core from the directory \0 in_mp3 (the sound files,

German lyrics have been choosen because of clear articulation and the license covering them), the

TextGrid files from \0 in_grid, steered by the configuration in \job_config and produces for

demonstration purposes in a series of outbound directories results. Navigate to \do_jobs and run

the following batch scripts:

C.2.2. Run the batch script 1 calc_formants_all.bat. This calculates formants using PRAAT and

publishes its output into the directory 1 temp_data_formants_raw: For documentation of the

underlying algorithm, see E.3.

C.2.3. Troubleshooting: most common error is that PRAAT is not found, see B.3.

C.2.4. Run the batch script 2 sweep_formats_all.bat. This selects formants using R and publishes its

output into the directory 2 temp_data_formants_swept: For documentation of the underlying

algorithm, see E.4.

C.2.5. Troubleshooting: The most common errors are that either R is not found at all (R doesn’t start) or it

points to the wrong R version (i.e. not the one you installed the libraries against). You need to get the

PATH variable right, see B.3. Other common failures are that the R libraries are either missing, outdated

or not found (see B.5.5).

C.2.6. Run the batch script 3 normalize_formats_all.bat. This normalizes formants using R and

publishes its output into the directory 3 temp_data_formants_normalized: For

documentation of the underlying algorithm, see E.5.

C.2.7. Run the batch script 5 analyze_formants.bat. This plots formants using R and publishes its

output into the directory 5 temp_plots: For documentation of the underlying algorithm, see E.6.

D. Methodology enhancements beyond the original VokalJäger

D.1. Artificial intelligence driven sweep

The original VJ basically selected the formant trajectory out of a large sample obtained by “sweeping” in PRAAT a

series of upper frequency ceilings. From the selected trajectory the representative formants are taken. The

selection process was mainly driven from physical considerations: which trajectory is the one with the best “fit” of

a DTT, which trajectory is the “smoothest” [VJ, pp. 64-71]. But not necessarily the smoothest trajectory is the one

yielding the most “appropriate” formant values.

The original VJ had already added “artificial intelligence” knowledge to “help” the algorithm to improve the

selection process. The “Rückfaltung” penalized formant readings which are physically unlikely, given the area

where the F1 and F2 values are usually expected, the “Extremdreieck” [VJ, pp. 94-98]. Other knowledge used was

e.g. a test on unrealistic F3 values and B1/B2 ratios [VJ, p. 106, pt. 6].

VJ.EAT takes the artificial intelligence process to the next level. As usually – from the segmentation – the vowel

quality as well as the speaker’s gender is already known on a qualitative base, we can optionally use that

information as “guidance” to further refine the selection process. VJ.EAT now acts like a human person selecting

the most “appropriate” curve / representative value.

A human agent especially would expect the upper frequency ceiling for female speaker to be about 5500 Hz or

above and for a male speaker to be about 5000 Hz or below. The agent would further expect the formant values

to be somehow in the ranges determined by statistics over a large sample of speakers [VJ, tab. 13, p. 135].

Hence it is now (optionally) possible to “switch on” an “artificial intelligence” agent to automatically help in the

selection. Technically the physical criterion – the pass error [VJ, (7), p. 61] – is supplemented with probability

measures, which firstly penalize unrealistic upper frequency ceilings for the gender at hand. Secondly unrealistic

readings, not compatible with large speaker-sample statistics are penalized as well. All weights and parameters

can and should be carefully calibrated / chosen, to avoid a forced “overfit” to the guidance. Technically the

[sample] information is mapped against the reference statistics [VJ, tab. 13, p. 135] by the speaker’s gender.

Those probabilities are further optionally considered in the normalization task: too unrealistic readings, most likely

caused by corrupt sound files or erroneous segmentation, can now – and should be – excluded from the reference

used for normalization [added: V0.10].

Exact math to follow.

E. Code and data documentation

E.1. Directory structure of VJ.EAT.core

\VJ.EAT.core: Holds all files required for the VokalJäger algorithms to work.

\doc: Holds the documentation PDFs.

\lib: holds VokalJäger library files.

\prog: holds VokalJäger program files.

\data: holds reference data.

E.2. Directory structure of VJ.EAT.demo

\VJ.EAT.demo: Holds an exemplarily fully-operational workspace set-up, with all input sound and

textgrid files plus and output formant files and plots. It comes with workspace specific batch scripts

and config files. Explore this and clone – in case - for you specific tasks. Usually, unless you choose

to change it for your project, the directory structure in \VJ.EAT.demo itself is as follows. This

will work out of the boy only if you put the \VJ.EAT.demo directory and the \VJ.EAT.CORE

directory in the same directory at the same level (see C.1).

 \do_jobs: the project specific batch scripts, which call PRAAT and R.

\job_config: the project specific configuration files

\0 in_grid: the project specific PRAAT text grid files.

\0 in_MP3: the project specific sound files, here: MP3s.

\1 temp_data_formants_raw: the very original raw formant files as produced by

VJcalcFormants, over all upper ceiling frequencies.

\2 temp_data_formants_swept: the formant files as produced by VJcalcFormants,

i.e. by sample the one ceiling chosen and the one formant extracted from the trajectory.

\3 temp_data_formants_normalized: the formant files as produced by

VJnormlaizedFormants, i.e. by sample normalized.

\5 temp_plots: analytical reports.

\9 temp_data_reports: various reports.

E.3. PRAAT program VJcalcFormants

Synopsis

E.3.1. Calculates with PRAAT for a given sound file and text grid formant, bandwidth and intensity trajectories

for a series of upper formant ceilings, usually 4500-6000 Hz [VJ, sectn. 3.7.2, p. 104]. The trajectories

are calculated inside the ”samples” (usually phonemes) which are identified via special text grid tier.

The information is enriched with some supplementary data – usually the word / context from which the

sample is taken - from an annotation text grid tier. See E.7 for exact documentation of output.

Location in \VJ.EAT.core:

\prog\PRAAT\ VJcalcFormants.praat

Batch script call:

start „VJ” praat [path]\VJcalcFormants.praat

Example call(s) in batch scripts in \VJ.EAT.demo:

\do_jobs\a calc_formants_all.bat

Configuration

E.3.2. A series of parameters need to be pushed to the PRAAT program in the exact order as documented

below. Note that directory references handed to the PRAAT program are either relative (”..\..”) to the

directory where the program is stored – i.e. relative to \prog\PRAAT – or are the full path

(”C:\...”), best protected with parenthesis.

Troubleshooting and Errata

E.3.3. PRAAT occurs to be a bit sensitive in the naming convention of sound files (esp. when selecting them

from within a script), so shorter non-whitespace names work.

E.3.4. In case you erroneously point PRAAT to the wrong directory to find the TextGrid files it will create empty

ones in there.

E.3.5. Another common error is that you don’t properly quote the paths in the batch file – if you have chosen

to change them. If you define a variable with a batch file with a path to a directory and the path contains

spaces, you must quote it with “…”, always quoting is a got idea, e.g. set _mypath=”C:\my

path”, not set _mypath=C:\my path without the quotes. When you use the variable you must

not quote it, i.e. … %_mypath% and never “%_mypath%”.

VJcalcFormants call parameters Example

mySoundDirectory: Input sound file directory. "..\..\demo\in_wav

"

MySoundName: Input sound file name, but excluding file extensions like

.wav.

"JanHofer_2016-11-

03"

MySoundExtension: Input sound file type/extension like wav (default)

or mp3. See PRAAT manual for all supported file types. [added in Version

0.10].

wav

myTextGridDirectory: Input PRAAT text grid directory. "..\..\demo\in_gri

d"

myTextGridName: Input PRAAT text grid file name, but excluding file

extension .textgrid.

"JanHofer_2016-11-

03"

myOutputdirectory: Output directory "..\..\temp_data_f

ormants_raw"

tagOut: The tag is the fundamental key to link different measurements

(and evtl. recordings together). Usually it identifies one recording of one
speaker in a specified context, mut as well be used to link different
recordings together. Speaker normalization will be applied for all data
assigned one tag. The tag is carried through all steps in the process and
written into the file and filename. This tag must not contain spaces (use “_”
in case instead).

"TSch_JH"

tailTagOut: The tail tag, as a numeric extension to the tag, is an optional

information used to separate different recording files of the same speaker
and/or different measurement files per recording (if the calculations are
spread over tasks within a multi-thread environment). This is "just" a tailing
tag for the filename, the subsequent R-kernel will merge all within one
speaker/sample (=tagOut) together (default: 1).

1

theChannel: Input WAV sound file channel to go for (default: 1). 1

shutterTier: This PRAAT text grid tier is the sample tier and defines the

time segments resp. the phonemes we calculate for (default: 1). The tier

acts as a “shutter” defining exact start end and point of the intra-sample
formant trajectories to be evaluated. Only non-empty entries are processed
and usually this sample tier should contain phonemes coded in generalized
SAMPA letter codes [for vowels, VJ: 'S2' in tab. 2, p. 21], e.g. 'a:' (see as well
filterSet, below).

3

annotationTier: This PRAAT text grid tier is the annotation tier, usually

the full word from which the phoneme is taken, e.g. 'Tagesschau' (default:
2). If not required, use same as shutterTier.

1

Offset: Offset for internal ID numbering (if not required, use: 0). This

assigns different number ID-ranges to different samples / speakers. Note,
that all samples must have different offset number ranges (or tags - see
above), when later processed together in the R-kernel, BUT if you spread
the same file over different sweeps you must make sure that the offsets are
identical – else the R-kernel will treat exactly the same sample from this
sweep (upper ceiling) different to exactly the same sample from that sweep
(as the receive with different offset entries different sampleIDs)

100000

lowerFrequency: Lower formant frequency ceiling in PRAAT: start value

of sweep in Hz (default: 4500; [VJ: pp. 64-71].

4500

upperFrequency: higher formant frequency ceiling in PRAAT: end value

of sweep in Hz (default: 6000) [VJ: pp. 64-71].

6000

frequencyStepWidth: Formant frequency ceiling in PRAAT: increased

in sweep by that amount in Hz (default: 100) [VJ: pp. 64-71].

100

windowLength: Window length in msec, default: 25 [VJ: p. 36]. 25

windowShift: Window shift in msec, default: 2 [VJ: p. 36]. 2

maxCalcs: Set to -1 to disable any limits (default), else calculation will

terminate after here specifified number of phonems calculated.

-1

filterSet: Restrict calculations to certain type of phonems pursuant on

what is found in the phonem tier.

none: No restriction are applied (default).

vowels: Restrict to vowels - the phonem has to start with a

generalized SAMPA vowel letter code [VJ: 'S2' in tab. 2, p. 21], what
will catch diphthongs as well.

consonants: Restrict to non-vowels (i.e. anything else).

vowels

delayStart: number of seconds the script waits before it actually starts,

what is required to keep messages somehow tidy in multithreading
environment (default: 0).

0

E.4. R program VJsweepFormants

Synopsis

E.4.1. Calculates for a series of formant files the sweep. Firstly all formant and bandwidth trajectories are

smoothed with a DTT [VJ, pp. 56-64]. Then a set of “optimal” trajectories is selected from all PRAAT

calibration settings, i.e. over all PRAAT upper frequency ceiling settings, as those with the lowest

ruggedness, i.e. the lowest DTT pass error heuristics [VJ, pp. 64-69; 104-108]. Finally from those optimal

trajectories formants are extracted at defined points and averaged, which then form the output of this

program [VJ, pp. 69-71; 107]. As result the optimal PRAAT calibration was chosen and from the

trajectories evaluated in that calibration, representative formant values are extracted. All calculations

are performed on Bark scale, in- out outputs are reported in Hertz for convenience. See E.7 for exact

documentation of output.

Location in \VJ.EAT.core:

\prog\R\ VJsweepFormants.R

Call:

rscript [path]\VJsweepFormants.R [CONFIG] [META]

Example call(s) in batch scripts and configuration files in \VJ.EAT.demo:

\do_jobs\2 sweep_formants_all.bat

\job_config\VJconfig_VJsweepFormants.txt

Sweep Configuration [CONFIG]

E.4.2. The program firstly takes a reference to the calculation configuration file, specific to

VJsweepFormants which lists a series of more static option parameters how to perform and

calibrate the calculation. Note that all directory references are either relative (”..\..”) to the

directory where the job was started or full path (”C:\...”). The config file is a text file which requires

a single tabulator between the call parameter and its assigned actual value (always non-quoted), plus a

carriage return in the last line of the file.

[CONFIG] calculation configuration file Example

inDirectory: defines directory where to find the raw

VJformantsRaw formant files, as produced by the PRAAT program

VJcalcFormants. If entry is missing, this defaults to actual directory.

..\temp_data_form

ants_raw

outDirectory: Defines the directory where to write the resulting,

selected formants (VJformantSwept files).

..\temp_data_form

ants_swept

regexSample: Allows to extract a subset from the original [sample]

field as extracted from PRAAT (usually: the phoneme), e.g. to strip of trailing
or leading information. What matches this Regex, is carried forward as
(new, stripped) [sample] field, the original value is stored in a newly

created [sampleOrg] field. In case all is to be used, apply as Regex .+,

i.e. match-all (default). To e.g. extract everything before the first “-“ in

samples like @-M-U-2, use as Regex [^\-]+, match all except “-“.

.+

moduloCondition: This optional feature allows a reduction of upper

ceiling frequencies, esp. for debugging and testing purposes to reduce the
processing load. Only upper ceiling frequencies [tf] modulo this number

equal 0 will pass (e.g. if set to 500 the frequencies 4500, 5000, 5500 will be

processed, but 4600, 4700 etc. will not. To disable, don’t use or set to -1

(default).

-1

sweepDoParallel: Defines whether (yes; default) or not (no) the

sweep should be run In parallel, distributed over multiple cores at your PC.

yes

sweepNumberOfCores: For parallel processing, specify the number of

cores you like to assign to the VokalJäger Sweep. Be careful: if you assign all
cores / to many cores, you will not be able to do anything with your
computer until the sweep is finished. If you assign a low number of cores
(or disable parallel processing by setting it to 1), you will have to endure a

longer processing time. The performance does not scale linear with the
number of cores assigned and all parallel processing makes only sense on
big jobs. On a i9 with 8 cores going from 1 to 2 cores doubles the
performance, going to 4 cores triples it, going to 6 and beyond does not
scale above 3.5 – but all depends on your machine and number of cores
(which may be as high a 64 on an AWS).

5

runMode: Specifies how the program executes and what reports it

produces:

process (default): Processes all files / all samples and writes results

into the outDirectory and summary reports into the

reportDirectory.

SelectedWithPictures

SelectedWithPicturesAndData: Processes only selected

samples (see reportSample) and writes for those details charts

and data files. They end up in to reportDirectory.

process

sweepCushion: defines which portion of the signal at beginning and

end is ignored as security cushion, resp. which central portion is analyzed
(default: 20% = 0.2, resp. 60% center; [VJ, pp. 54, 104]).

0.2

sweepOrderDTT: defines the order of the DTT to be applied. Any

deviation from the default value of 3 must be well contemplated [VJ, pp.

56-64, 105].

3

sweepWeightBandwith: defines the residual weight (1-) given to

the bandwith pass-error when the pass error heuristic is evaluated (default:
0% = 0; original VJ had 5%, resp. 95% to the formant pass error; [VJ, p. 105,

(33)].

0

sweepPickSingle: defines the fixed point intra-sample location

where the formant values are picked up, if fixed pick up is activated (default
30% = 0.3; [VJ, p. 107, (34)]. Note, this excludes the cushion, i.e. is relative

to the extracted center. This creates the P-marked results, e.g. F1P.

0.3

sweepPickPair: defines the fixed point intra-sample locations where

an entry/left and exit/right formant pair is picked up (default 20% = 0.2 i.e.

pick up at 20% and 80%). Note, this excludes the cushion, i.e. is relative to
the extracted center. This creates the L/R-marked results, e.g. F1L and

F1R.

0.2

sweepApplyTriangleTest: defines whether (default: yes) or not

(no) the most-likely formant-triangle based “Rückfaltung” should be

applied [VJ; pp. 93-98]. Note, that this works best with a “gender hint”, see
Gender in the META configuration file below.

yes

sweepTriangleCreep: Defines by how many bark the original VJ [p.

120, tab. 9] reference triangle should be increase or decreased. A by 0.25

bark slightly widened reference formant-triangle is proposed, as it occurs
the Kiel-Corpus speakers’ formant ranges are comparatively narrow. [added
in Version 0.10].

0.25

sweepAveragingBand: defines which measurements, i.e. which

upper frequency ceilings, should be considered when the final formant are

0.02

evaluated by averaging. This is done by defining a margin of error  (default:
2% = 0.02) to the total pass error [VJ, p. 107, pt. 8].

sweepGenderHintMalus: if enabled (entry > 0; disabled: 0) and

gender hits are provided in the META files, this artificially raises the pass

error by a factor of sweepGenderHintMalus (defaut: 0.5, i.e. 50%)

for every 1000 Hz deviation in the actual upper ceiling applied in the sweep
at hand from the PRAAT standard upper ceiling values of 5000 Hz (male)
and 5500 (Hz) female (NB: ceiling below 5000 Hz and above 5500 Hz are not
penalized for male resp. female speakers). This feature was not available in
the original VJ and slightly “penalizes” unrealistic measurements
respectively upper ceiling settings which are “too far off” from the text book
values.

0.2

sweepF3errorWeight: when the pass error is constructed the F3 (B3)

error component is downweighted by this factor (and the F1/F2
components are upweighted accordingly to achieve a 1 normalized weight
sum). Default is 0.75 i.e. 75% (i.e. the “smoothness” of F1/F2 curves a

slightly more important than that of the F3 curve). The original VJ had this
feature disabled with a F3 error weight of 1.

0.75

sweepLocationProbabilityWeight: Enables the AI-based

sweep by assigning this weight to the probability component (default= 0.5,

i.e. 50%; switch off: 0). Not available in the original VJ.

0.5

sweepLocationProbabilityWidth: width of equal-probability

plateau: all samples within that range are dealt with a pseudo-probability of
1, measured a probability of the sample being in that range - after fitting a
normal distribution (default: 0.5, i.e. 50%; no plateau=0). The distribution

/ plateau is centered at the median of the empirical distributions as
documented in [VJ, tab. 13, p. 135; factually tab. 59, p. 457], the standard
deviations is approximated from there as 0.5 * IQR / 0.67. The plateau is
required to give some flexibility over the expected values as documented in
the VJ. Not available in the original VJ.

0.5

reportSample: Specify a list of sample IDs separated with a “,“ without

spaces, for which details should be produced (see reportMode). The

sample IDs usually are identified by spurious results by certain samples
when reviewing the standard output in the VJformantSwept files.

100004,100008

Beta job configuration file [META]

E.4.3. Secondly it takes a reference to the meta job configuration file, specific to the project, which lists a

series of the formant files names (referenced by their tag) plus supplementary information:

[META] job configuration file line entries (by column) Example

tag: defines defines the tag to go for. Note that the data associated to this

tag may be spread over several files by the VJcalcFormants program

if the tailTagOut option has been used but the tail is not attached here.

TSch_JH

Gender: hint for the VokalJäger Rückfaltung (to select the reference

triangle; see: sweepApplyTriangleTest) and gender bases malus

(see: sweepGenderHintMalus)

 male [VJ, tab.9 “Männer”, p. 120].

 female [VJ, tab.9 “Frauen”, p. 120].

 general i.e. no hint [VJ, tab.9 “HG1”, p. 120].

male

doUse: A flag to indicate whether or not this tag / formant file should

actually be process (Y: default) or not (N). That allows selective calculations

without deletion of lines.

Y

doSweep: A flag to indicate whether or not this tag / formant file should

actually be swept (Y: default) or not (N). That allows selective calculations

without deletion of lines.

Y

XXX: Any other columns with a leading “” would be just attached to the

data in the VJsweepFormants program. This allows insertion of generic

meta data to the process. Example: _Name

Jan Hofer

Standard Input

E.4.4. The program looks in the inbound directory for the raw

VJformantsRaw … .TXT

formant files, as produced by the PRAAT program VJcalcFormants.

Standard Output

E.4.5. The program produces in the output directory for each tag

VJformantSwept … .TXT

files containing the selected formants. It further produces into the report directory by tag a

 VJformantSwept_Stats … .TXT

summary file, which holds descriptive statistics on the formant distributions by sample.

Detailed Output

E.4.6. In case the detailed analysis report were activated it produces in the report directory the picture files

VJformantsSweep … .PNG

VJformantsSwept … .PNG

The Sweep file show the formant trajectories of one sample for various ceiling frequencies plus

colors those used for selection / averaging. The Swept file reports the minimum pass error

trajectories (and annotates with the averaged values). The associated data is found in the

VJformantsSwept … .TXT

files, where the RsltSrs file hold all trajectories, the RsltWnnr only the trajectory with the minimum

pass error and RsltFnl the one selected data set as it would be added to the standard output.

E.5. R program VJnormalizeFormants

Synopsis

E.5.1. Calculates robustly normalized formants and bandwidths [VJ, pp. 74-101]. See E.7 for exact

documentation of output.

Location in VJ.EAT.core:

\prog\R\ VJnormalizeFormants.R

Call:

rscript [path]\VJnormalizeFormants.R [CONFIG] [META]

Example call(s) in batch scripts and configuration files in VJ.EAT.demo:

\do_jobs\3 normalize_formants_all.bat

\job_config\VJconfig_VJnormalizeFormants.txt

Normalization Configuration [CONFIG]

E.5.2. The program firstly takes a reference to the calculation configuration file, specific to

VJnormalizeFormants which lists a series of more static option parameters how to perform and

calibrate the calculation. Note that all directory references are either relative (”..\..”) to the

directory where the job was started or full path (”C:\...”). The config file is a text file which requires

a single tabulator between the call parameter and its assigned actual value (always non-quoted), plus a

carriage return in the last line of the file.

[CONFIG] calculation configuration file Example

inDirectory: defines directory where to find the VJformantSwept

swept formant files, as produced by the R program VJsweepFormants.

If entry is missing, this defaults to actual directory.

..\temp_data_form

ants_swept

outDirectory: Defines the directory where to write the resulting,

normalized formants (VJformantNormalized) and statistics

(VJformantNormalizedStatistics) files.

..\temp_data_form

ants_normalized

normalizeRegexIncludeSample: indicates whether #all

(default) records or only a selected few should be included (unless explicitly
excluded, see …ExcludeSample below) as reference for the

normalization (i.e. those relative to which the order statistics resp.
percentiles are evaluated [VJ, p. 86-88]. In case not #all should be

selected, a standard Perl regular expression (Regex) [4] can be defined here,
applied to the samplecontext field, which usually holds (VJ) SAMPA

style phonetic coding [VJ, tab. 2, p. 21, col. S2], enclosed in preceding and
following phonemes with “>” resp. “<”, which for the sample itself are

equivalent to the standard start-^ and end-$ Regex symbols. Common VJ-

Regex are:

>@< … exactly single ‘@’

>@< … everything starting with ‘@’: @, @n …

@< … everything ending with ‘@’: @, o:@, E:@ …

>\w\:?< …single vowel + optional ‘:’

>\w\:< …long vowel

>\w< …short vowel

>\w\w< …exact diphthong …

>\w\:?<6 …long/short vowel followed by vocalized R

#all

normalizeRegexExcludeSample: indicates whether #none

(default) records or only a selected few should be excluded from the
reference for the normalization. See IncludeSample accordingly.

^@$

normalizeMethodFormants

normalizeMethodBandWidth: defines the normalization methods

applied to all formant (and bandwidth) columns. Implemented so far are:

robustLobanov (default for formants): robust Lobanov Z-

transformation [VJ, pp. 91-92, (29)].

robustZ (default for bandwidth): robust MAD Z-transformation [VJ, p.

91, (28)].

robustGerstman: robust Gerstman range transformation [VJ, pp. 90-

91, (26)].

Lobanov: standard Lobanov Z-transformation [VJ, p. 82, (18)]. Avoid, as

not robust.

Gerstman: standard Gerstman range transformation [VJ, p. 81, (15)].

Avoid, as not robust.

robustLobanov

robustZ

normalizeBackprojectFormants: Indicates whether (yes:

default) or not (no) the normalized formants should be backprojected

from Z to Hertz for convenience [VJ, p. 92; p. 128, tab. 11, entries under
w+m]. As results the normalized formants (and/or bandwidth) are shown
on the Hertz scale as those of a hypothetic androgyny / cross-gender
speaker. So far, this only works for methods robustLobanov and

robustZ.

yes

normalizeBandStart: Defines the maximum nominal band width 

(default 0.05 = 5%) in the quantile statistics [VJ, pp. 86-88, (21-22)].

Required only for the robust Lobanov and Gerstman normalization
measures.

0.05

normalizeBandWidth: Defines the actual band with  after trimming

for outliers (default 0.01 = 1%) in the quantile statistics [VJ, pp. 86-88,

(21-22)]. Required only for the robust Lobanov and Gerstman
normalization measures.

0.01

normalizeF1hinting: Enables (yes: default) or disables (no) the

robustness increasing feature that for F2 quantile statistics only those F2
are considered, where the corresponding F1 values lie in the lower 1%-
50% F1 percentile range. That helps to “find” the “upper” left and right F2-
corners in the standard (plotted) F1/F2 formant triangle.

yes

normalizeMaxError: Only samples with a filter error below this

threshold (as percentile of all filter errors) are considered for the
normalization. That excludes obvious rubbish values – esp. those outside
the norm triangle – from the calculation. Examples: set to 1.0 to include

everything, 0.9 (default) to exclude worst 10% etc. Note that the

percentile is evaluated excluding full failures with 0 dB (which are always
excluded regardless of this setting). The percentile is evaluated on the
selected set, see IncludeSample and ExcludeSample above.

[added in Version 0.10].

0.9

Beta job configuration file [META]

E.5.3. Secondly it takes a reference to the meta job configuration file, specific to the project, which lists a

series of the formant files names (referenced by their tag) plus supplementary information – for general

base entries, see: E.4.3.

[META] job configuration file line entries (by column) Example

doNormalize: A flag to indicate whether or not this tag / formant file

should actually be normalized (Y: default) or not (N). That allows selective

calculations without deletion of lines.

Y

Standard Input

E.5.4. The program looks in the inbound directory for the swept

VJformantSwept… .TXT

formant files, as produced by the R program VJsweepFormants.

Standard Output

E.5.5. The program produces in the output directory for each tag

VJformantNormalized … .TXT

files containing the normalized formants.

It further produces a statistics file

 VJformantNormalizedStatistics … .TXT

summary file, which holds descriptive statistics on the formant distributions by sample.

E.6. R program VJanalyzeFormants

Synopsis

E.6.1. Calculates some statistics and plots a series of formant plots

Location in \VJ.EAT.core:

\prog\R\ VJanalyzeFormants.R

Call:

rscript [path]\VJanalyzeFormants.R [CONFIG] [META]

Example call(s) in batch scripts and configuration files in \VJ.EAT.demo:

\do_jobs\5 analyze_formants.bat

\job_config\VJconfig_VJanalyzeFormants_long_monophthongs

Normalization Configuration [CONFIG]

E.6.2. The program firstly takes a reference to the plot configuration file, specific to VJanalyzeFormants

which lists a series of more static option parameters how to perform the plots. Note that all directory

references are either relative (”..\..”) to the directory where the job was started or full path

(”C:\...”). The config file is a text file which requires a single tabulator between the call parameter

and its assigned actual value (always non-quoted), plus a carriage return in the last line of the file.

[CONFIG] calculation configuration file Example

inDirectory: defines directory where to find the

VJnormalizeNormalized normalized formant files, as produced by

the R program VJnormalizeFormants. If entry is missing, this defaults

to actual directory.

..\temp_data_form

ants_normalized

outDirectory: Defines the directory where to write the resulting plots. ..\temp_plots

plotTitle: a Text which will be inserted as leading text plot to title and

plot file names.

Long monophthongs

plotRegexIncludeSample: indicates whether #all (default)

records or only a selected few should be included in the plot, what is defined
by a Regex analyzing the field samplecontext (see E.6 for more on

Regex)

\w\:$

normalizeRegexExcludeSample: indicates whether #none

(default) records or only a selected few should be excluded from the plot, ,
what is defined by a Regex analyzing the field samplecontext (see E.6

accordingly).

#none

plotIncludeTag: allows to select only one tag (usually: speaker) for

analysis, default is inclusion of #all tags . [Added in version 0.11].

#all

plotOriginal: whether (yes: default) or not (no) to create a point

by sample plot in the F1/F2 plane with original values before
normalization.

yes

plotNormalized: …accordingly with normalized and back-projected

values [VJ, p. 92-93].

yes

plotSpectrum: In case (yes; default: no), plots the spectrum

respectively frequency response of the vocal tract as implied by the
(original) first 3 formants and bandwidths. That’s done for all selected
samples 1-file each, so you should ensure that not too much is selected.
Technically it plots the amplitude spectrum (46) of the hypothized 3-pole

no

vocal tract transfer function (43), see VJ pp. 443-446 for details. Note, that
this is idealized spectrum, “formed” from 3 formants, and not the (DFT)
spectrum as measured in the sound file. [Added in version 0.11].

plotEllipseinclusionRate: Defines, if ellipses are plotted, what

ratio of data points they should include, under a 2-dimensional normal fit
(default: 0.5, i.e. the ellipses are supposed to cover 50% of the data

points). The ellipse plots are based on a (robust) covariance estimator and
are of lesser reliability the lower the assigned population counts are (starts
plotting from 3 samples upwards).

0.5

plotStatistics: Indicates whether (yes) or not (no) a series of

base F1/F2 statistics for both, the normalized and the original values,
should be evaluated and plotted (NB: Usually you may want to include all
samples here, see plotRegexIncludeSample). The statistics are

evaluated in the bark domain for accuracy and reported in the hertz
domain for readability (the number of significant digits follows standards
in physics, see G.1). [Added in version 0.12]

yes

Beta job configuration file [META]

E.6.3. Secondly it takes a reference to the meta job configuration file, specific to the project, which lists a

series of the formant files names (referenced by their tag) plus supplementary information – for general

base entries, see: E.4.3.

[META] job configuration file line entries (by column) Example

doPlot: A flag to indicate whether or not this tag / formant file should

actually be plotted (Y: default) or not (N). That allows selective calculations

without deletion of lines.

Y

Standard Input

E.6.4. The program looks in the inbound directory for the normalized

VJformantsNormalized… .TXT

formant files, as produced by the R program VJnormalizeFormants.

Standard Output The program produces in the output directory

E.6.5. VJplotF12_ … Orgnl (Pt): all data points on original scale before normalization. Plots as well

the norm triangles for male (smaller) and female (larger) speakers. By tag, and across all tags (All). In

case there are more than 15 distinct entries in [tag] it restricts to 15 and lumps all lower populated

[tags] into one artificial “~other” category (applies to all VJ plots below as well).

E.6.6. VJplotF12_ … Orgnl (PtEL): all data points on original scale before normalization, with fitted

Ellipses. By tag, and across all tags (All);

E.6.7. VJplotF12_ … Orgnl (EL): fitted Ellipses on original scale before normalization. By tag, and

across all tags (All);

E.6.8. VJplotF12_ … Nrmlzd (Pt): all data points after normalization and back-projection. By tag, and

across all tags (All);

E.6.9. VJplotF12_ … Nrmlzd (PtEl): all data points after normalization and back-projection, with

fitted Ellipses. By tag, and across all tags (All);

E.6.10. VJplotF12_ … Nrmlzd (EL): fitted Ellipses after normalization and back-projection. By tag, and

across all tags (All);

E.6.11. VJplotSpctrm_...: Spectrum as implied by formants of sample, by sample (formant values are

reported with 2 digits significance).

E.6.12. VJstatsFx_...: simple descriptive statistics on F1/F2, original and normalized (see G.1 for

reporting of significant digits) [added in version 0.12].

E.6.13.

E.6.14. VJsgnf_...: Results of a two-dimensional t-test (Hotelling T2), which reports which intra-tag sample

pairs are significantly different (whereby the euclidian distance of the sample centroids in the F1/F2

bark plane is the test measure; note there is no difference before/after normalization; sample groups

with less than 3 samples are considered as too low sample counts to make an assessment and are

excluded with a “ls” marker; see G.1 for significance coding). [added in version 0.13]. Note that this the

plot is pruned, i.e. the pair X1-X2 is only shown once, hence missing under X2-X1. So if you miss X1-X2,

find it as X2-X1.

E.7. Data dictionary

[C]=config: the data point was created based on a configuration.

[R]=routed: the data point was produced by a preceding program and is just routed through.

[C]=calculated: the data point was created by the program listed.

 File: VJ formants

Raw

VJ formants

Swept RsltSrs

VJ formants

Swept

RsltWnnrs

VJ formants

swept / Rslt

Fnl

VJ formants

normalized

 Produced
by

program:

VJcalcFormant

s.praat

VJsweepForman

ts.R (optional)

VJsweepForman

ts.R (optional)

VJsweepForman

ts.R (default)

VJnormalizeFo

rmants.R

(default)

Data structure (tf: PRAAT upper celling target frequency; t: intra

sample trajectory time point)

 For all samples: tf
* t

For selected
sample: tf * t

For selected
sample: tf

For all samples /
selected samples:

tfwin

For all samples:
tfwin

tag: core identifier. TSch_JH C R R R R

tailtag: number, in case the tag is spread over several files 1 C R R - -

tf: target ceiling frequency applied. 4000 P R R - -

annotationID: autonumbered entry as of annotation tier, starts

with specified offset.

100001 P R R R R

annotation: the actual annotation entry (usually word from which

the sample was taken) as of the annotation tier.

Damen P R R R R

sampleID: autonumbered entry as of sample / shutter tier, starts

with specified offset.

100002 P R R R R

sample: the actual sample entry as of the annotation tier (NB: from

the original value only a subset which matches a Regex may be carried
forward)

a: P P* R R R

sampleOrg: Keeps the very original [sample] field as created by

PRAAT.

a: - P R R R

previoussample: holds the sample of the preceding

phoneme/sample under the condition that the preceding sample
belongs to the same annotation/word (holds a ## in case the preceding

d P R R R R

 File: VJ formants

Raw

VJ formants

Swept RsltSrs

VJ formants

Swept

RsltWnnrs

VJ formants

swept / Rslt

Fnl

VJ formants

normalized

sample belongs to another annotation; # in case there is no associated
annotation).

nextsample: holds the sample of the following phoneme/sample

under the condition that the next sample belongs to the same
annotation/word (holds a ## in case the preceding sample belongs to
another annotation; # in case there is no associated annotation).

M P R R R R

samplecontext: puts the sample/phoneme in the context of

preceding (if any) and following (if any) phonemes. Constructed as:
[previoussample] + “>” [sample] + “<”

[nextsample]. This allows convenient construction of Regex for

analysis.

d>a:<m - P R R R

t: the absolute time in the recording in [sec], 0 is beginning of

recording.

0.187 P R R (@pickup) R (@pickup) R

tRel: the relative time in the sample in [sec], 0 is beginning of sample. 0.01 P R R (@pickup) R (@pickup) R

tRelNrm: the relative time in the sample in percent of sample length,

0 is beginning of sample, 100 is end of sample.

12 P R R (@pickup) R (@pickup) R (@pickup)

fii: measurement number, within sample (0 is beginning). 1 P R R (@pickup) R (@pickup) R (@pickup)

F1-B3: formant (F) /bandwidth (B) trajectory values, in Hertz over t 553 P R - - -

F1bFltrd-B3bFltrd: formant (F) / bandwidth (B) trajectory

values in Bark, after DTT, over t

553 - P - - -

Filter error FltErr in (pseudo) dB per trajectory/tf [VJ, p. 106, (33)] - P R R (lowest error) R (lowest error)

FrmntSelect indicates if the trajectory/tf is the one with the

smallest filter error (1), if belonging to the set of trajectories/tf

sufficiently near the one with the smallest error (2) [VJ, p. 107, pt.8], or

else (0). The trajectories/tf marked with 1 or 2 are used to calculate

the final formant values as averages [VJ, p. 107, (34)].

… holds the number of trajectories used in averaging

 - P R -

P

-

R

 File: VJ formants

Raw

VJ formants

Swept RsltSrs

VJ formants

Swept

RsltWnnrs

VJ formants

swept / Rslt

Fnl

VJ formants

normalized

F1P-F3P, B1P-B3P: formant/bandwidth extracted at central pick

up point out of DDT-ed trajectory, in Hertz, spot values.

… averaged over minimal-error trajectories [VJ, p. 107, (34)].

552 -

-

P

-

R

-

-

P

-

R

F1L-F3L, F1R-F3R: formant extracted at left/intro (L) and

right/extro (R) pick up point out of DDT-ed trajectory, in Hertz, spot
values.

… averaged over minimal-error trajectories [VJ, p. 107, (34)].

510 -

-

P

-

R

-

-

P

-

R

F1PN-F3PN, B1PN-B3PN: normalized formant/bandwidth, in Z

or back-projected in Hertz.

552 - - - - P

F1LN-F3LN, F1RN-F3RN: normalized formant extracted at

left/intro (L) and right/extro (R) pick up point out of DDT-ed trajectory,
in Z, , in Z or back-projected in Hertz.

510 - - - - P

F. Change Log

F.1. Version 0.15

F.1.1. Fixed bug that to small sample size can crash the hoteling T2 test

F.2. Version 0.14

F.2.1. Fixed bug that erroneously the F1/F2 probabilities got “normalized”

F.2.2. Added protection in plot in case of too many distinct entries in [sample]

F.3. Version 0.13

F.3.1. Adding Hotteling T2 test to VJanalyzeFormants.R.

F.4. Version 0.12

F.4.1. Adding base statistics to VJanalyzeFormants.R.

G. Appendix

G.1. Significance

G.1.1. Significant digits of a result depend on the variance resp. statistical error margin of the result. Following

standards in physics the error is reported with one significant digit, and the result is reported with all

digits up to the order of magnitude of the error, e.g. 9’123.41 is reported under an error of 0,678 as

9’124.4 ± 0.7 and under an error of 678 as 9’100 ± 700 [VJ, pp. 439-440]. This approach eliminates

unscientific pseudo-accuracy which does not exist in the 1st place.

G.1.2. Significance of difference are evaluated with t-test resp. Hotellings T2-test or bootstrap equivalences.

The p-values are coded following the standards in statistics as *** p<0.001; ** p<0.01; * p<0.05; .

p<0.1; ns p>0.1 and ls in case there is test condition of (too) low sample counts [VJ, pp. 440-441].

H. References

[1] https://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/
[2] https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
[3] https://www.i8086.de/zeichensatz/ascii-7-bit.html
[4] http://kirste.userpage.fu-berlin.de/chemnet/use/suppl/perl-regex.html

https://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/
https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://www.i8086.de/zeichensatz/ascii-7-bit.html
http://kirste.userpage.fu-berlin.de/chemnet/use/suppl/perl-regex.html

